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Abstract—Numerical calculations were performed for the melting process in porous media around a hot
surface with conducting fins (fins with a large thermal-conductivity). The effect of the orientation of the
hot surface on the effectiveness of the attached fins was examined. Three orientations, that is, the melting
from below, from the side and from above, were selected as typical ones. Timewise variations of a
temperature distribution, a velocity distribution, an interface shape, a mean Nusselt number and a melting
fraction were compared. As a result, the temperature and flow fields became very complicated due to the
attached conducting fins, especially in the cases of melting from below and from the side. The mean Nusselt
number, {Nu),,, over the hot surface for the melting from below was kept large for a long time, and varied
irregularly with time. The value of (Nu),, for the melting from above decreased monotonously with time.
The melting rate was the largest for the melting from below, and the smallest for the melting from above,
while the effect of the fins appeared relatively larger for the melting from above.

1. INTRODUCTION

SOLID/LIQUID phase change heat transfer in saturated
porous media occurs in many systems and in nature
including latent heat thermal energy storage, manu-
facturing of alloys, freezing and thawing of soil, and
so forth. Therefore, studies on this subject have been
actively conducted [1-7].

Chellaiah and Viskanta [1] studied freezing of satu-
rated and superheated water in porous media packed
in a rectangular cavity. They performed one-dimen-
sional calculations considering conduction alone. The
calculated results agreed well with experimental ones
when the water superheat (the difference between an
initial temperature and the freezing point tem-
perature) was small, but the agreement was not good
for a large superheat and for a large size of porous
particles, due to natural convection. Considering
natural convection, Beckermann and Viskanta [2],
and Sasaki er al. [3] proposed a numerical model to
simulate solid/liquid phase change of fluid in porous
media. They performed two-dimensional calculations
for a rectangular cavity, and their results agreed well
with experimental ones even when natural convection
was important. Okada and Fukumoto [4] numerically
studied the melting of ice around a cylinder immersed
in porous media. They also took natural convection
into account, and the numerically obtained interface
shapes were in good agreement with experimental
ones. They also examined effects of Stefan number

and Rayleigh number on the melting rate. The effect
of the density inversion of water was examined
numerically and experimentally for freezing from
above by Sugawara et al. [5], and for melting from
below by Xhang and Nguyen [6]. They used rec-
tangular cavities, and indicated that the density inver-
sion largely affected the fluid flow in the melt and the
heat transfer.

The heat transfer rate in solid/liquid phase change
in porous media is usually small due to small thermal
conductivities of phase change material and porous
particles. Some means must be devised to enhance the
heat transfer, especially for thermal-energy-storage
applications. Therefore, one of the authors, Sasa-
guchi, and Kusano and Nishimizu [7] experimentally
and numerically studied the solidification process
around finned surfaces in porous media, and showed
the usefulness of the fins.

In the present study, a numerical model was pro-
posed to simulate the solid/liquid phase change heat
transfer in porous media around a finned surface,
based on a model proposed by Bennon and Incropera
[8]. Calculations were performed for three orien-
tations of the finned surface, that is, melting from
below, from the side and from above, to examine
the effect of natural convection on the heat transfer.
Calculations were also performed for the case with
nonconducting fins (fins with a zero thermal-con-
ductivity) to make the effect of the attached con-
ducting-fins clear.
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a thermal diffusivity

aspect ratio. L/ L,

¢ specific heat

d  diameter of porous particles
g gravitational acceleration

fy latent heat ol fusion

h heat transfer cocticient

(1.Jy grid point

K permeability

L. width of test element (see Fig. 1)

L. height of the test element (sec Fig. 1)
p pressure

R melting fraction

! time

T temperature

w. v x-, y-dircction mass-averaged velocily
components

V. scale of magnitude of dimensionless
velocity vector

maximum ol magnitude of the

dimensionless velocity vector

x. v coordinate axes (see Fig. 1)

( ') vector.

Vuax

Greek symbols
/i thermal expansion coefficient

NOMENCLATURE

’ volume fraction

A0 increment of isotherms

& thickness of fins

porosity

/. thermal conductivity

kinematic viscosity

p  density

b angle between the center line of the test
clement and the horizon (see Fig. 1). or
variables. U, V. 0 or 7, in equations (16}
and (17).

-z

~

Subscripts
b fin
1 fin-1 (sce Fig. 1)
F2  fin-2 (see Fig. 1)
i initial ‘
I liquid phasc |
p  porous particles !
PH fusion point |
8 solid phase
w  hot wall
AY ~y-direction
i y-direction.

2. A NUMERICAL MODEL AND GOVERNING
EQUATIONS

Figure 1 shows the physical model on which the
numerical analysis was performed. It consists of a hot
wall, an opposite insulated wall, and conducting fins
with thickness of d connecting the two walls. A porous
medium is packed in the enclosed region. and for
simplicity the number of fins is assumed infinite so
that we only need to consider one element shown in
Fig. 1(b). Solid (ice in this study) in the pores is

7
if\ [l
- - = 0°

() (0)

Fic. 1. Physical model: (a) enclosure with a finned surface
and (b) element for calculation.

initially sct at the fusion temperature. Attime 1 = 0 s,
the temperaturc of the hot wall 1s suddenly changed
and maintained at a prescribed value. T,,, which is
larger than the fusion temperature, and the melting is
initiated. To examine the effect of the orientation of
the hot wall on the melting, the angle ¢ in Fig. 1 was
set at 07 (melting from below). 90 (from the side) or
180" (from above). Timewise variations of an interface
shape, a melting fraction and a mean Nusselt number
over the hot wall were compared. In addition, cal-
culations for a hot wall with nonconducting fins were
also performed for comparison.

Assuming a two-dimensional laminar flow. con-
stant density except buoyancy terms in momentum
equations, an isotropic porous medium, thin fins (no
temperature gradient in the direction of the fin width
(the x-direction in Fig. 1)) and local thermal equi-
librium (i.e. the temperature of a porous particle 1s
locally equal to that of surrounding fluid), as well
as modifying equations proposed by Bennon and
Incropera [8] to apply them to the present problem.
the governing equations in dimensional forms can
be derived as follows :

Continuity
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Momentum
(1) X-direction

Ou . op v
P, +pV:(u) = — i +pv,V2u—pfl\‘u+b,\., 2)

where
by = prgsin (T —Teu) {1+ B T— Ton)
+ BT = To)*+ (T —Tor) '}

and, according to ref. [9],

By = —0.678964520 x 10~*(1/K),

£, = 0.907294338 x 10~ *(1/K?),

By = —0.964568125 x 10~ (1/K?),

B, = 0.873702983 x 10~ °(1/K*).

(ii) Y-direction
ov . ép v
pa +pV-(Tr) = — (Ty +pv,Vzv—prL‘+b_,., 3)

where
b. = prgcos py(T—To) 1B +BAT—Ten)
+B3(T—Tou)*+ Bl T— Tor) '}

Energy equation for the fluid

~

oT oy
pe s +paV-(@T) =V (AVT)— p.hf({;'. @)
The second term on the right hand side of equation
(4) is a source term related to phase change.

Energy equation for the fins

oT. _  (¢Te 1 (7 1 (. oT
a TV Taeo\Maxhoe e\t ax s, S

©)

In the equations (2)—(4), p, pc, and 4 are defined as
follows:

p = (1 —&)p,+ep (assuming p, = p,)
pe = (1 —e)pyc,+ (e~ 7)pscs+7pi0)
A= (1-&) i+ (E—7) A+ Nk (6)

For buoyancy terms, b, and b,, in the momentum
equations (2) and (3), the density inversion of water
[9] is considered.

Introducing dimensionless quantities,

X y L

X=—, Y="\ U=—"u V=""p
L. L, " @'
L2 a T-T,
= %’;’ T = ‘L? f 0= T
iy L} T, T
and dimensionless parameters,
Ton—T, K v L

0 = - ! D =— = — . =
PH Tw _ T| k) i L% £ Pr a‘ B As L_,‘ £

9B L) (T — Tow) (T~ Ton)
R, =22 % ™77 S = Iw PR
aM V|a| L] ( le)M hr
_A0 Po A
T ALY CF_“I’ f o’ P
A ¢ ¢
A==, Q=" Q="
A Ty’ o]
B> B

Iy = /71 (Tw—Tpn), o= E(Tw_ TPH)Z,

B
Omz = ITT(Tw“ Ton)?,
we may obtain the following nondimensional equa-

tions;

Continuity

oU oV

axtar =" @
Momentum
(1) X-direction
Uovvy=-L% pyvu_p X vss
ot VU =—qaxtF "D,

(8)
where

3

A; .
B = }’IﬁPrRaMOM(l + o +°‘M29|$A + o303 sin ®.

0 —Opy
HM = T——GPH .

(it) Y-direction
R

(?‘ I’ V) 1 ¢P 5 K
6’ T ( ]I 4 Y D.l i

where
A
By = ylﬁPrRuMeM

X1 4 otpg, O + a2 03 + o303 ) cos .

Energy equation for the fluid

00

- !
Q(ﬁr‘r +V'(V0)=ﬁV'(AV9)+Sh, (10)

where

l 1—=Bpy 0y,

"TON (Som Ot

0= (-gll,+e,
Q = [(IT—£)Q,+ (e —7 )+ 7]/,
A= (1=e)A+ (=7 )A 47
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Tablc 1. Boundary conditions

{!

ol With conducting fins With nonconducting fins
. . - of)
V=0 0 0, {rom cquation (5y) . 2
(
5 ) ot
A | 0 0 (from cquation (5)) v =0
[
}Yo=0 0 | {
L U &
Y= 0 = ()
I, oY cY v

Energy equation for the fins

o0, 5?3UL‘+ 100 Lfooy | .
cr NLeYs o \ex 0 N\CX A J' th

The volumetric liquid fraction. 7. in a control volume
undergoing phase change can be cvaluated using the
following iterative expression [10}:

vl " “” - ()P“ RN
B =5+ (STl (12)
1= Opy
with limitations expressed by equation (13),
0y <e (13

The value of k in the third term on the right hand side
of equations (8) and (9) can be evaluated from the
next equation.

TR I LR B N y,".

In the expression (14), we adopt the Kozeny-Carman
model [11] for the permeability because @ maximum
Reynolds number (=d- (u*+07)" “/v) is small. about
6.0. under conditions in the present study.

The initial conditions are sct at

(14

W=

t=0. U=1=0. 0=0. 5,=0

(in the entire region) (15)

and. the boundary conditions are listed in Table .
where 0, stands for the temperature of the fins and it
can be evaluated from equation (11). The non-
dimensional temperature, 0, on the hot wall is sct at
unity except for a calculation, whose results are shown
in Fig. 2, in which measured values are input as the hot
wall temperature in the calculation and the calculated
results are compared with experimental ones.

The velocity of a perfectly-solidified control volume
with », =0 must vanish. This is aulomatically
accomplished since the value of x becomes infinity
(sce cquation (14)) for 7 = 0. and the Darcy term
(resistance to the fluid flow) also becomes infinity.
resulting in zcro velocity in the control volume. as is
seen from cquations (8) and (9). The nondimensional

governing equations were discretized based on the
SIMPLER algorithm [12] with the power law for the
convective terms, and they were solved iteratively.
Detailed numerical procedurcs can be seen in refs. {12,
13]. The calculation was iterated at the same time-step
unti! the following criteria were satisfic

(1) tor the velocitics. & and 1.

max|p (LS ¢ (L ]
<

3
max|¢" (1Y <107 (16)

(1) for the temperature. 0. and the volumetric liguid
fraction. 7.

oSy =L I
14 o oot (7
PRV

(111) and. tor the dimensionless residual mass-source
[12}. A,

b < 10 (%)

where

DAY

ML) = (U, —U)AY + (1~ 1

In the above expression. AY and AY stand for non-
dimensional lengths of a control volume in the x- and

v-directions. respectively. The subscripts w, e. s and n

mean west-, east-, south- and north-side control-volume
faces. respectively.

Preliminary calculations were performed to deter-
mine the number of meshes. For ¢ of 0 and 180 . 25
(x-direction) x 25 (y-direction) and 30 x40 non-
uniform mesh-systems for the hall region of the
elemental region in Fig. 1(b), because of symmetry ol
the phenomena, were examined. Since the difference
between the calculated results is very small. c.g. at
t = 0.014 the melting fraction. R, was 0.497 for the
30 x 40 mesh and 0.510 for the 25x25 mesh. the
25 25 mesh system was used for ¢ of 0 and 180
considering computational expense. For ¢ of 90 .
30 x 20 and 40 x 30 mesh systems were used for pre-
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Fi1G. 2. Comparison between calculated and experimental results for the case with the conducting fins:
(a) interface shapes and (b) melting fractions.
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5

limmary calculations, and the 30 % 20 mesh system
was chosen (at © = 0.018. the value of R was 0.505 for
the 3020 mesh system and 0.499 for the 40 30
mesh system). The increment of time, At. was changed

from 1.0x 10 "0 2.0>10 " during the caleulations.

3. RESULTS AND DISCUSSION

3.1 Comparison of numerical results and experimental
OHCN

To check the validity of the present numerical cal-
culations. numerical results under several conditions
were compared with experimental ones. An cxample
18 shown in Fig. 2. The conditions are as follows:

Att=0s:T=T,=-2C120:T, =20C
Lo=01m L, =005m

material of the fins: brass

thickness of the fins: 0 = 0.003 m

particles : glass beads with diameter. . of 0.0{2 m
fluid : pure water.

With these conditions the values of important non-
dimensional parameters become as [ollows:

Ry = —9.07=10% P, =936. D, =401x10 "

c= 0491, =542 0, =237 (Su)y = 0251

As cxpressed belore. since [ (= —0.678964520 %
10 %) is used as the thermal expansion coeflicient
in the definition of Rayleigh number. R y,. it has a
negative value.

Now. Fig. 2(a) shows a comparison ol timewise
variations of interface shape, and Fig. 2(b) that of
melting (ractions.

The hot wall temperature in the experiment could
not be sct at the preseribed value. 7, = 20 Coat 1 =
0 s. taking about two minutes to reach the value. So,
in the caleulation the measured value was used as the
hot wall temperature. The calculated interface shapes.
in gencral. agree well with the cxperimental ones
obtained on photographs (sec Fig. 2(a)). exeept in
regions near the top insulated wall. The porosity, .
ncar the regions is larger than that in other regions in
the experiment so that there is more quantity of ice to
be melted near the top wall. while in the caleulation
the porosity is assumed uniform and isotropic in the
entire region for simplicity. The agreenient of the melt-
ing fractions (Fig. 2(b)) is also good although there
exists some difference duc to the fact mentioned
above. Figure 2 is an example for which the largest
difference between calculated results and experimental
ones was observed in the preliminary runs. In other
cxample calculations with simpler conditions than
that for the case of Fig. 2. i.e. the case of no porous
particles (pure water only) and the case with small
glass beads (¢ =29 mm: lor which natural con-
vection was very weak), the agreement of the results
was fairly good. Considering the many assumptions
made in the calculations for simplicity. ¢.g. umtormity

ol the porosity and local thermal cquilibrium. it ¢an
be said that the agreement is satisfactory cven {or the
case shown in Fig. 2

320 Etfect of the orientation of the horwall

Calculations were performed for three orientations
ol the hot wall, that is, melung {rom below. from the
side and from above. The conditions ave the same as
those in Fig. 2. except that the imtal temperature, 7.
is equal to the fusion temperature (0 C). and that the
wall temperature is assumed (o be set at a prescribed
value (step change). T, = 20 C, at 7= 0 5. Figure 3
shows the casc of melting from below (¢ = ). Since
the phenomenon s symmetry about the vertical
centerline. the velocity ficlds are shown in the left of
the figure. and the isotherms in the right of 1. Al a
very carly stage (Fig, 3(a): © = 0.0030). since o melt
faver above the hot wall is very thin. no natural con-

o

vectton is observed near the conter of the hot wall
But. ncar the fin surface. a weak circulauon is already
observed near the base of the fin. This circulauon
induces a weak natural-convection cell on the hot wall
near the fin base. The interface shape is sull smooth
with weak celll Ar 7= 00100 (Fig. 3ih)y
Bénard's-celi-type  natural-convection cells appear
above the hot wall, and the temperature distribution
becomes rregular. The meifting becomes {aster i the
regtons where the hot liguid ats divectly. And. it
also seen that the circulations along the fin surlaces
become strong, and the melting near the fin tips is
fast. At a late stage (Fig. 3e) 0 = 0.0243), the many
weak cells above the hot wall observed in Fig. 3(b)

such

merge into very large cells, and they strongly inreract
with the large circulation near the tin surface. There-
tore, the fluid flow becomes very complicated. The
density-inversion region bewtween = 0 (7T = 0 C 1t
the sohd liquid interface) and (0= 02 (T =4 C} 1
very smallin the entire time so that it does not appar-
ently affeet the flow and temperature fields.

For comparison. temperature and flow ficlds for
the case with the nonconducting fins at © == 001, cor-
responding to Fig. 3(b). are shown in Fig. 4. At this
period. the thickness ol the melt above the hot wall is
almost the same as that in Fig. 3¢h). except near the
{ins. At very early stages (not shown here) the melting
above the hot wall was slightly faster for the cuse with
the conducting fins than that tor the case with the
nonconducting fins. This is because the convecuon
above the hot wall for the case with the conducting
fins is accelerated by the circulation along the fin
surface. Comparison of Fig. 4 with Fig. 3(b) indicates
that the conducting fins act well to melt ice along the
fin surfaces for the melting from below.

Figure S shows the case of mielting from the side
(=90 At r=0.0030 (Fig. S{ad). a weak cn-
culation along the hot wall is obscrved, and the hot
fluid near the top of the hot wall protrudes shighthy
toward the insulated wall. But. the circulation is stili
very weak at this carly stage so that the irregulany



Effect of orientation on the melting of {rozen porous media 19

Insulaped wall

3} =
1 Vaax - 220.0 ! |
_ 311‘ Voo = 400 Soilid :
Pkt Hil e
=38 ¥ i a
4 ! & g (a)

Insulated wall
v = 264.4

= 400

(b)

Fin-1
.

Nayq22 TIITFS

Hot wall

Insulated wall

P remrhm————— * ;
1o PR = 280.2
[ e 1Y H -/- MAX
SR L LTV
;)‘fp——-,-.“‘/’l".‘y = 400
TYTER Wit SC
N I,—_..,,:j /" e
N ISR v L o
P "--m«#t{ R Sl o~ (C)
{ VSR R R e R i
I M -,,M::\u:::\\\g o
R VN et R R B et ) ¥ .
{x, ..?’ e J/'-v--~‘ =
i P
Ry 4187 I
NP AT b
Piiyeee iy sy
\§ AL =z
-~ " N -~ » 4 ~
L - b I
L e S =

Velocity field é—{*-é Isotherms

Fic. 3. Timewise variations of velocity and temperature fields in the case with the conducting fins for
$ = 0% (a) T = 0.0030, (b) = = 0.0100 and (¢) T = 0.0243.



20 K. SasaGucHl and H. Takto
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Fi1G. 4. Velocity and temperature fields at © = 0.0100 in the case with the nonconducting fins for ¢ = 0
corresponding to Fig. 3(b).

of the interface shape is small. As time proceeds, the
circulation becomes stronger, and the melting near
the top fin develops very quickly. as shown in Fig.
5(b) at T = 0.0180. And, at this stage, convection cells
due to thermal instability are observed above the bot-
tom fin, and the cells enhance the melting there. In

Fig. 5(c¢) at a late stage (7 = 0.0336), the thickness of

the melt above the bottom fin is considerable.

Figure 6 shows the case with the nonconducting fins
at 7 = 0.0180, corresponding to Fig. 5(b). Comparing
the two figures. it is seen that the melting near the top
fin is faster for the case with the conducting fins (Fig.
5(b)) than the case with the nonconducting fin (Fig.
6). But, the difference became smaller with time duc
to thermal stratification near the top fin. Hence. the
bottom conducting fin begins to play an important
role for the heat transfer enhancement as time pro-
cceds as shown in Fig. 5(c).

For the case of the melting from above (Figs. 7(a)-
(¢): ¢ = 180 ), only very weak natural convection is
obscrved even for late stages since the melt layer 1s
thermally almost stable. and heat conduction is pre-
dominant. Therefore, the interface shape is very simi-
lar to that for the solidification process [7]. The density-
inversion region is larger than those for other orien-
tations of the hot wall (compare the region between
the solid/liquid interface and the isotherm of 0 = 0.2
in Fig. 7(c) with those in Figs. 3(¢c) and 5(¢)). but it
still occupies only a small portion of the entire melted
region, and therefore it does not give a noticeable
cffect on the flow and temperature ficlds.

From Fig. 8 for the case with the nonconducting
fins corresponding to Fig. 7(b). it is scen that the
thickness of the melt layer below the hot surface
is almost the same as that in Fig. 7(b) except necar
the fin surfaces. Since the melting is very slow lor
¢ = 180" in the case of the nonconducting fins, the

cffect of the attached conducting-fins on the heai-
transfer enhancement largely appears.

3.3, Timewise variations of mean Nusselt mumber and
melting fraction

Figures 9(a)—(c) show timewisc variations of u
mecan Nusselt number over the hot wall for the case
with the conducting fins. (Nu), (solid lines). the sum
of mean Nusselt numbers over the two fin surfaces.
(Nu), (dashed-two-dotted lines). as well as a mean
Nusselt number over the hot wall for the case with
the nonconducting fins, (NVw), (dashed lines), {or com-
parison. The definition of (Nu),, is

Ml
(Nu), = J (N, dX.
13

where

i ke (ru‘)
(Nu),, = LT T \ev)

Taking fin-1 (sec Fig. 1) as an example, the mean
Nusselt number over the fin surface is defined as fol-
lows (heat flux flowing into the considered clement 15
assumed positive) ;

L. [""
(Nuyy = ; (Nu) ., dy.
L, Ju

where

., L, Lo
{Nu),, = l_l (

HW
/ i XA -

Now, for the melting from below. ¢ =10 (iig.

9(a)). (Nu), for the casc with the conducting fins
(the solid line) abruptly decreases with increasing time
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during the carly stages. and then increases. This
increase is due to the gencration of many convection
cells above the hot wall as shown in Fig. 3(b). The
increasc in (Nu), occurs carlier and the increasing
rate is smaller in comparison with the case for the
nonconducting fins (the dashed line). This is because
for the case with the conducting fins the cells above
the hot wall are induced by the circulations along the
fins during very early stages, and become stronger
after the thickness of the mclt layer on the hot wall
becomes larger and the Rayleigh number based on the
thickness exceeds a critical value. On the other hand,
in the case with the nonconducting fins, the onsct of
the convection cells above the hot wall is purcly due
to the thermal instability in the melt.
After the maximum value is reached, the value of
{Nu), for the case with the conducting fins slightly
decreases, and then is kept almost constant {or
7 > 0.01 because the convection becomes stronger as
the melting progresses, in spite of the fact that the
distance between the interface and the hot wall
becomes larger. The fluctuation of (Nu),, for 1 > 0.01
is due to the changes in the flow structure and the
number of cells above the hot wall with time. For the
case with the nonconducting fins the trend of the
timewise variation of (Nu) is similar with some delay
of time to that for the case with the conducting fins.
The value of (N, decreases during carly periods.
and then remains almost constant for v > 0.01. reveal-
ing the effectiveness of the fins. The abrupt deerease

in (Nu), near ©=0.01 is duc to the fact that the
strong circulations along the fins make the melting
very fast, resulting in a sudden increase in the distance
between the interface and the fin surfaces, especially
near the fin ups.

For the melting from the side, ¢ = 90
the value of (M), for the case with the conducting
fins is kept almost constant for ¢ > 0.005, although
the vilue is smaller than that in Fig. 9(a). due to the
strong circulation along the hot surface and the cffect
ot the strong convection-cells near the bottom fin. us
shown in Fig. 5(c). It is also secen that the value ol
{Nu),, for the case with the nonconducting fins is larger
than that for the conducting fins. ;md the value of
{(Nu), is almost the samc as that of (Nu), for
stages, meaning large heat transfer angmentation by
the attached fins.

In the case of the melting from above, ¢ = 180
(Fig. 9(c)). the values of (M), Tor both types of the
fin decreases monotonously with increasing time. and
they become very small at late stages, while the value
of (f\n ) is maintained larger than the values of (N
Hence, tor this orientation of the hot wall, the dfcct
ol the fins on the heat transfer augmentation is fairly
large.

Finally. the timewise variations of the melting frac-
tions lor the three orientations of the hot wall ure
shown in Figs. 10{a)-{(c). where R is defined as the
melted volume divided by the total volume of the
clement. The solid lines represent the case with the

(Fig. 9(hy).

late
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corresponding to Fig. 7(h).

conducting fins, and the broken lines the case with the
nonconducting fins. From the figures it is scen that
during t < 0.005 the values of R for the cases with the
conducting fins (the solid lines) arc almost the same,
regardless of the orientation of the hot wall. and the
values arc slightly larger than those for the case with
the nonconducting fins. As time proceeds. the value
of R increases lincarly for the melting from below
(Fig. 10(a)) because the conveetion cells above the
hot wall and the circulations along the fins impinge
large surface area on the solid/liquid interfuce as
shown in Fig. 3. For the melting from the side (Fig
10(b)) the increasing rate of R is slightly smaller than
that in Fig. 10{a). For the melting {rom above (Fig.
10(c)) it beeomes quite small at late stages. and the
shapes of the curves are very similar o those for sol-
idification processes. Comparing the values of R for
the cases with the conducting and nonconducting
fins. it is seen that the difference is the smallest for the
melting {rom below since natural convection above
the hot wall is very strong. and it is the largest for
the melting rom above because heat conduction is
predominant. Thus, the cffectiveness ol the attached

conducting fins appears very clearly for the case of

melting from above.

4. CONCLUSIONS

Calculations were performed for the melting of ice
in a porous medivm surrounded by a finned surfacc
and an opposing insulated surface. The effect of the
orientation of the hot surface on the flow and tem-
perature fields, on averaged Nusselt numbers over the
hot and fin surfaces, and on a melting fraction was
examined, Furthermore, comparing the case with
nonconducting fins, it was shown that the effectiveness

of the conducting fins is changed with the orientation
of the hot surface. Bused on the results obtained the
conclusions arc summarized as follows:

(1) For the melting from below., sivong cireulations
along the fins are generated, and the melting near the
fins is enhanced. especially near the tip ol the fins.
Since these circulations induce convection cells above
the hot surface, the onsct of the cells is earlier than
that for the casc with the nonconducting fins.

{2) When the melting is initiated from the side. we
near the upper conducting fin melts faster than that
for the case with the nonconducting fins during carly
times, but the difference becomes smaller with increas-
ing time duc to thermal stratification. Very strong
convection-cells generated above the lower con-
ducting fin due to thermal instability play an impor-
lant role in melting ice. Thus, in this orientation of
the hot surface the lower conducting fin has a large
effect on an increase in the melting rate.

{3} For the melting from above. although weak
natural convection arises near the conducting fins. the
heat transfer is, in general. dominated by conduction.
Hencee. the melting below the hot surface is very sfow.
and the effectiveness of the attached conducting fins
appears clearly, compared with the melting processes
with the other orientations of the hot surface.

(4} From the timewise variations of the mean Nus-
selt numbers over the hot surface. (Nu), . and over the
conducting fins, (Nu),.. the valuc of (N, for the case
with the conduecting fins is larger than the value of
(N, tor a long period for the melting from below.
For the melting from the side, these values are almost
the same. and for the melting from above (Nuj, 15
much larger than (V). The difference between the
melting fractions for the cases with the conducting
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and nonconducting fins becomes larger for the melting
from above than those for other orientations of the
hot surface. Therefore, the effect of the attached con-
ducting fins 1s considerable for the melting from

above.
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